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SUMMARY

For Reynolds numbers sufficiently large that the dissipation terms
in the disturbance energy equation are negligible, the stability of a
three-dimensional boundary layer to a plane-wave disturbance of arbitrary
- orientation reduces to a two-dimensional stability problem governed by
the boundary-layer velocity profile in the direction of wave propagation
and by the mean temperature profile. Solution procedures are presented
~and the eigenvalue problem formulated including temperature fluctuations
and a thermal boundary conditionm.

INTRODUCTION

The avallable studies of the stability of compressible laminar
boundary layers to infinitesimal disturbances have been restricted es-
sentially to two-dimensional boundary layers, while those few papers
gvallable on the stabillity of three-dimensional boundary layers consider
only incompressible flow. With the current interest in compressible
three-dimensional boundary layers encountered, for example, on swept
wings or on yawed bodies in supersonic and hypersonic flow, it is of
_ some interest to formulate an analysis for the stability of three-
dimensional compressible boundary layers.

A1l the disturbances considered herein are plane waves. For a two-
dimensional boundary layer those disturbances that propagate in the di-
rection of boundary-layer development (local free-stream direction) are
called two-dimensional disturbances, while those propagating at some
angle to the local free-stream direction are called three-dimensional
disturbances. For a three-dimensional boundary layer where the local
free stream is not in the direction of the pressure gradient and, there=~
fore, one might say that there is no single direction of boundary-layer

1This work was begun while the author was at the California Insti-
tute of Technology and completed at the Lewis Research Center.



development, it is convenient to consider all disturbances as three~
dimensional and to identify them by the angle of the direction in which
they propagate relative to some reference direction.

The present study considers only "subsonic" disturbances, that is,
disturbances that move subsonically with respect to the component of
the free stream in the direction of wave propagation. ©Such disturbances
have amplitudes that decay exponentially in the free stream. A disturb-
ance that propagates supersonically with respect to the free stream would
be expected to have a nonvanishing amplitude far from the wall.

The stability of two-dimensional compressible boundary layers to
two-dimensional disturbances was first considered by Lees and Lin (refs.1l
and 2). They concluded that for subsonic and slightly supersonic flows
the stability characteristics of a given boundary-layer profile are un-
affected by temperature fluctuations. Specifically, the stability cher-
acteristics are determined entirely by satisfying velocity fluctuation
boundary conditions. Dunn and Lin (ref. 3) found this conclusion to be
invalid for moderately high supersonic Mach numbers, and they discussed
thermal boundary conditions; however, they did not present any calcula-
tions that include consideration of the energy equation and thermal
boundary conditions. This matter was further pursued by Dunn, Lin, and
Mack and independently by Lees and the present author. The latter group,
in a critical evaluation (refs. 4 and 5) of the order of magnitude and
solution procedures used in solving the compressible boundary-layer sta-
bility problem, succeeded in identifying the leading and higher order
viscous and conductive effects on the disturbances, and, in fact, used
the leading and next order terms (including a dissipation term in the
energy equation) in the calculation of neutral stability characteristics
of insulated compressible boundary layers. The logical completion of
the analysis of Dunn and Lin (ref. 3), including temperature fluctuations
and a thermal boundary condition but considering only the leading viscous-
conductive effects on the disturbances (e.g., no dissipation term in the-
energy equation), is presented in appendix D of reference 4 and also by
Mack (ref. 6).

The studies of references 1 to 6 consider the boundary layer to be
a "nearly-parallel” flow and treat the problem under the premise that
the parallel flow disturbance equations apply; thus, terms involving the
mean normal velocity and longitudinal derivatives of mean quantities are
omitted. By means of the parallel flow assumptions the stability of a
local profile is calculated as if only that profile existed from -~ to
4w, In fact, Dunn (ref. 7) and Cheng (ref. 8) show that the mean vertical
velocity does not enter until the second asymptotic approximation to the
viscous solutions. Thus, if only the leading terms need be considered,
the parallel flow approximation is a valid one. The work described
herein makes the parallel flow assumptions.



With regard to the stability of two-dimensional parallel flows to
three-dimensional disturbances, Squire (ref. 9) shows that for an in-
compressible fluid, the disturbance equations can be transformed to the
completely two-dimensional Orr-Sommerfeld equation and that the two-
dimensional disturbance is the least stable. Dunn and Lin (ref. 3) con-
sider the stability of a two-dimensional compressible boundary layer to
three-dimensional disturbances. They show that when only the leading
viscous-conductive effects on the disturbances are congidered the equa-
tions for three-dimensional disturbances can be transformed to those for
two~-dimensional disturbances. They carefully point out that for compres-
sible flow these transformed equations are not the equations of a proper
two-dimensional disturbance so that no "families of solutions" are ob-
tainable; however, the transformation does permit the use of solution
procedures for two-dimensional disturbances in problems of three-
dimensional disturbances.

The stability of three-dimensional boundary layers to three-
dimensional disturbances is considered for incompressible flow by Owen
and Randall (ref. 10) and by Gregory, Stuart, and Walker (ref. 11).
Their results for a parallel flow have been concisely summarized by
Moore (ref. 12): "For a disturbance assumed to be moving in a certain
direction, the eigenvalue problem may be treated as a two-dimensional
one, governed by the boundary-layer veloclty profile measured in that
direction.” Of course, for incompressible flow the energy equation is
irrelevant and within the framework of the parallel flow assumption this
statement is exact. It is shown herein that, for compressible flows,
the transformation implied by Moore's statement applies exactly for the
continuity and momentum equations but only for the leading terms of the
energy equation. As already pointed out in reference 3, the dissipation
terms do not all transform.

Accordingly, if consideration of the problem is restricted to the
leading terms of the disturbance equations according to Dunn-Lin order-
ing, the eigenvalue problem may be treated as two-dimensional governed
by the boundary-layer velocity profile in the direction of wave propaga-
tion and by the mean temperature profile. The formal solution of the
problem, which is according to appendix D of reference 4, 1s presented
and the resulting secular equation and a number of its special cases are
discussed.

EQUATIONS OF INFINITESIMAL DISTURBANCES

Consider a point on the surface of a body on which there develops
a three-dimensional boundary layer. It is assumed that the profile of
the steady laminar boundary layer is known at this point 1n terms of
the component profiles in two mutually orthogonal surface coordinate



directions x* and z* (see following sketch). The normal coordinate

*
X

Direction

— s o wave
propagation

is y*. (All symbols are defined in appendix A.) The velocities in the
x¥- and z¥-directions are u* and w¥*, respectively. The resultant ex-

ternal velocity U; = ‘/ugz + wgz makeg an angle Y = tan'l(wZ/u:)

. * .
with the x " -axis.

Durm and Lin (ref. 3), by order of magnitude arguments, present dis-
turbance equations for a parallel or nearly parallel flow at very large
Reynolds number. The developments in the text of this report are based
on the counterparts of the Dunn and Lin disturbance equations applicable
to a three-dimensional mean flow. These egquations are sufficient for
the purposes of the present report; nevertheless, it 1s of some interest
to go through the same operations with more complete disturbance equa-
tions so thHat the nature of the approximation will be better understood.
Accordingly, the results for analogous operations on the complete paral-
lel flow disturbance equations are given in appendix B. Teking the spe-
cific heats and Prandtl number to be constant and the viscosity to be a
function of temperature alone, the disturbance equations for very large
Reynolds numbers are:

Continuity:

Jp*? do* !t Jp** , Op¥ Qu* ! Sv*? SJur*!
So t W S P g TV Eﬁ_ﬁ'p*(ax* * +Bz*)

(1)



Momentum:

JQux ! , Ou¥ Op** d2uxt
oS+ wr S wr S5+ W)hg%*“*ayiz
(2)

3 2
(%+ur+w*%"zi—')=-%%'+u*§y§' ()

(g%;i + u¥ 5——— + w¥ gg;i + yx! gg;) = - %E;l + p¥ gj:;'
Energys

(3€¥— + u* 5;—— + w¥ 5——— + vxt *)

L e B B8 T o)

P

State:

pxt _ p¥! T
p¥ T op* + ¥ (6>

In these equations primed quantities are disturbance quantities, whereas
unprimed quantities are mean quantities.

A significant characteristic of this system is the absence of dis-
sipation terms in the energy equation. Thls absence makes possible the
following transformation to a completely two-dimensional form. The dis-
sipation terms are small only when the Reynolds number 1s very large so
that the propriety of a given calculation depends on an & posteriori
demonstration that the calculated Reynolds number is sufficiently large.
It is shown in appendix B that the dissipation terms do not transform.

Dimensionless Variables

Expressing equations (1) to (6) in dimensionless form requires
choosing sultable reference quantities. The reference length will be
called Lref and be of the order of magnitude of some boundary-layer

thickness. The reference pressure is the mean boundary-layer pressure
which 1s constant at the external stream value in accordance with the
boundary-layer theory. For the boundary-layer mean flow, p 1is
ldentically unity. The reference temperature will be some average tem-

perature and will be called Tref' Untll the form of the disturbance



is specified, the choice of the reference velocity is not clear. Tem-
porarily, it will be given the symbol U;fef. The reference time is then

L;ef/U;ef' The dimensionless forms of equations (1) to (6) are:

Continuity:
o' -!-G-—-—Ué cos‘l’ap' + w ve sin‘i’ap' + v 9 = - (Bur +Bv' +8w')
3t TN UE L 3x Uker Sz 35 TN Ty T >
(7)

Momentum:

', = Ue dut , = Ue du! du Ue
o + u cos‘I’B—-*-w—sin‘l’s—-i-v' = cos ¥

(Bt Ufer x Urer 2 3y Ufer

= M
YM’%ef Rerer ayz
% *
dvt , — Ue dvt ., = Ue ov'!
p( + U =—— cos ¥ + W sin ¥
ot Ve ox UX e z
z
1 op' 1 Q°v!
= P (9)
‘fMEef Reper = dyc
dwt , — Ue vt o= UE 5 US|
o) u cos Y + w sin ¥ + vt sin ¥
(Bt Ufer Ox rerf dz Sy Ufer

1 op! 1 Oyt
= - 55_+Re f“ayz (10)

ref
X ¥*
r - 1)( v - Ue -y %L)
= BP_ u =g cos Y + w sin ¥
( T t U%ef U?ef
Rerer © ayg



State:
1 1
P'=%'"'?TT (12)

where

*
Uref

Mper = qﬁ;;fggg

(13)

(14)

* *
R UrefLref
e —-T—___

ref © Vier

Form of Disturbance

Consider the disturbance to be an oblique plane wave propagating
. at an angle © with respect to the x-direction. A fluctuating quantity
is then described by the relation

Q' (x,y,z,t) = q(y)explia(x cos @ + z sin © ~ ct)] (15)

where a 1s the wave number of the disturbance and ¢ 1is the disturb-
ance propagation velocity. The wave number 1s considered as a real
quantity, while the propagation velocity is complex. Disturbances are
neutral for cgy = O and are amplified for c¢; > O or damped for

cq < 0.

Introduction of relations (15) into equations (7) to (12) yields
the following set of reduced dimensionless disturbance equations: (From
- these equations on primes dencte differentiation with respect to y.)

Continuity:
- Ve L= U . \
i{u gx— cos ®cos ¥Y+w % sin @ sin ¥ - c]jr + p'e
ref ref
= -p(¢!' + if cos ® + 1h sin 6) (16)
Momentum:
[(‘ Ve ® ¥+ w Ue ® 4 < e 14
ap|if v cos cos + w ¢ sin sin - clf + ou cos
Ufer Ufer ) Ufer

YMgef Rerer



. 2 (— UZ 6 ¥+ UZ in ® ¥ > 7! u
la™p\u 7% cos U cos Wrm— sin ® sin ¥ - ¢clp = - + Y
Ux U* 2 Re

ref ref YMref ref
(18)
- U¢ ~ U . Uk
ap [ u TF—— cos ®cos ¥ +w T sin ® sin ¥ - c}h + o@w! gr - .&in b4
ref ref ref
= - iar ;in e + = M 1 (19)
™™D p €ref
Energy:
Uz Uz
A beeed e - e . . ]
OLQ[J.(U. e cos@cosY+wU*—81n651n‘l’—c)9 +qj1’}
Uler ref
U U
. (Y - %)(; e — Ve ‘
= ia u cos ©® cos ¥+ womxr— sin @ sin ¥ - cjn
( T Uref Urer
-+ E, n
Reper o o (20)
State:
T 8
n= 4y (21)

Transformation to Two-Dimensional System
If an effective dimensionless mean velocity is defined as

Ur -
—— (U cos ©® cos ¥ + ¥ sin @ sin ¥) (22)

W =
Uref

and UX chosen so that W = 1 at the outer edge of the boundary layer,

ref
the reference velocity is

U¥ - = U% cos(® - ¥) (23)



As might have been expected, thls quantity is the component of the re-
sultant external velocity in the direction of wave propagation. Thus

U cos @ cos ¥+ w sin @ sin ¥
W= 2
cos(® - Y¥) (24a)
=T
_u w tan © tan ¥ (24b)

1+ tan ® tan ¥

When the x and 2z velocity disturbances are combined in the man-
ner

F=7f cos ®+ h gin @ (25)

and the first momentum equation is formed from equation (17) multiplied
by cos ©® plus equation (19) multiplied by sin ©, the disturbance
equations become:

Continulty:
i(W - c)r +plg = —p(op' +1F) (26)
Momentum:
. in |9 "
[i(W - c)ZF + W'o] = - + F (27)
P ® rM%ef aReyer
3
1paf(W - e)p = ~ —5— + —=— ag" (28)
M2 Re
Y¥ref ref
Energy:
- ' = r -1 - + B an
oli(W - c)o + Tig] 1( = )(w it ge— Lo (29)
Statet
I )
T = S + o (320)

The boundary conditions are:
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At the wall, y = O,

f=0 h
F=0
h=0
> (31)
p=0
6=0 J

As y - o,
-~
f=20
F=0
h=20
® =0 > (32)
6 =0
=20 W,

The equations and boundary conditions (26) to (32) are in the form
of those for a two-dimensional boundary layer with respect to two-
dimensional disturbances. The techniques available from references 3 to
6 can be used in solving these equations. The wall-temperature boundary
condition chosen here is not in the most general form. A more general
boundary condition is ag, + bg) = O where a and b are constants

depending on the surface material, its thickness, the disturbance fre-
quency and the method of internal cooling if one is employed (see appen-
dix of ref. 3). Since most surface materials have thermal conductivities
much greater than that of gases, any temperature fluctuations in the gas
would be almost completely damped at the wall and the condition 6(0)=0
is reasonable for most purposes.

The solutions to equations (26) to (30) yield results for the com-
bined longitudinal velocity fluctuation amplitude F but not for the
components f and h. Yo obtain f, it is necessary first to solve
equations (26) to (30) and to determine the appropriate eigenvalues,
then to substitute these eigenvalues and the corresponding ¢ and =«
eigenfunctions into equation (17). Integration of equation (17) will
yield the distribution of the amplitude function f. The amplitude func-
tion h can then be obtained by using equation (25).
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SOLUTION OF DISTURBANCE EQUATIONS

Following the procedures of references 1 to 7, two of the solutions
to the linear system (eqs. (26) to (30)) are inviscid solutions, while
the remaining ones are viscous.

Inviscid Solutions

A solution is sought to the disturbance equations of the form
a(y) = ao(y) * = y) + . - - (33)
e

The resulting equations for the zeroth approximation gn are the inviscid

. equations, since they are the same as those obtained by ignoring viscosity
and conductivity altogether. In the inviscid equations, which are as fol-
lows, the subscript zero is omitted since the (g functions are the only

- ones that will be obtained by this method:

Continuity:
1
e+ iF -%—cp+i(w-c)[n-%:|=0 (34a)
Momentum:
- t
i(ch)J P o= - (34p)
™
2fW - ¢y _ w!
icx,( 7 )@_-Y—Mz (34c)
Energy:
(W - ¢ T? . - 1
1( T )9 t = i(W - c)(I;?T—>“ (344d)

The Reynolds and Mach numbers in equations (33) and (34) that will be
used for the remainder of the analysis are defined as

*
U?efLref
R\é = X
Ve
* (35)
ﬁ _ Uper
~ R
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Also, the mean and fluctuating temperatures will hereinafter be referred
to the external mean flow temperature.

The quantities F and 6 can be eliminated from equations (34a),
(34b), and (34d) so that equations (34) can be written (following ref. 1)

(36)

These equatlions can in turn be written as a second-order linear differ-
ential equation in either of the dependent variebles ¢ or =n. It has
been customary to consider the solution of the second-order equation in
the varigble ¢, which is proportional to the normal velocity fluctuation
amplitude. In the present analysls, the solution procedure follows that
of references 4 and 5 where the inviscid equation is written as follows
in terms of the pressure fluctuation amplitude =:

t t M2(w - )2
x" (2W - T?)n' + a? [1 S = e)” }: (37)

=W -c

Following Heisenberg and Lin, it has been customary to solve the
inviscid equation in the form of a convergent series in powers of al.
References 4 and 5 show that this procedure is inadequate for supersonic
and hypersonic boundary layers and suggest the following more exact pro-
cedure. (A complete description of the Heisenberg-Lin procedure for com-
pressible boundary layers is given by Mack (ref. 6).)

Equation (37) can be converted into a first-order nonlinear equation.

Let
-
¢=2—
ol
Equation (37) then becomes
Me(w - )2 (2wl T
r _ _ A _ ~2n2
G-[ T Sl o T)G alG (38)

The outer boundary condition on & 1s cobtained by considering the solu-

tions to equation (37) for large y and for 1 - (1/M) s ¢ £ 1. These

solutionsg are )
+ ‘/ M2l _ N2
T~ e aVY1-M (l C) ¥y (39)
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Since disturbance amplitudes of subsonic disturbances are expected to
decay far from the wall, the negative exponent is chosen in equation (39).
The outer boundary condition on G is

_ A1 -0 - c)?

G(e) = (40)

The balance of the procedure presented is for neutral disturbances,
e = cp, ¢4 = 0. Equation (38) is a complex equation and is split into

the following real and imaginary equations:

ore - BOE]s (BB, o e

E - C T

oW T! 2
¢f = (w — - -E,-)Gi -a (ZGrGi) (41b)

The outer boundary conditions are

/1 - M2(1 - c)?

Bl = - (42)
Gi(w) =0

There is a logarithmic singularity of the inviscld equation (eq. (37))

at the point where W = c; this point is referred to as the critical
point. The expressions for G in the neighborhood of the critical point
are obtained by series expansion (method of Frobenius) of equation (37)
and the definition of G. The result from reference 4 is

Gp = -1 - Anz In|qn| + (const)n2 - A2n5 In|n|

p | MW
+ [A(const) - (23 - 2A% + +“)]n5 + ... (43)
]
1 > 0: 0
G, = (x = 3.14159) (44)
n < Ot Arn2(L + Ag + . . )

where

n=y—yc
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pote Te 39.[_@_(_‘)] (45)
We T T, Wllay\T /],
and
B = e + ng* Lo A e (48)
T W T 2T, T U T,

The calculation procedure for the inviscid solutions is as follows:
For a given profile (W,T) and value of c:

(1) Evaluate A and B. Choose a value of «. Evaluate the outer
boundary condition from equation (42).

(2) Assume some value for the constant in equation (43). Evaluate
G. for a small positive value of ¢ (G = 0).

(3) Continue evaluation of G, by integration of equation (4la) to
the outer edge of the mean flow. Compare the result with the outer
boundary condition (42).

(4) Repeat steps 2 and 3, adjusting the constant until the outer
boundary condition is satisfied.

(5) Use the value of the constant from step 4 to evaluate G, and
Gy for some small negative value of 1.

(6) Continue evaluation of G, and G; by simultaneous integration

of equations (41).

(7) Record at least the values of G, and Gy at the wall (y = O)
since they will be used in determining the stability characteristics.

Viscous Solutions

The usual procedure in obtaining viscous solutions has been to solve
a set of reduced equations that retain terms up to a certain order, near
either the critical point or the surface. The ordering parameter is de-
noted € where

(i)
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Lees and Lin (ref. 1) used an ordering procedure valid in the neighbor-
hood of the critical layer to obtain viscous solutions, and then used
these solutions to satisfy wall boundary conditions. Such a procedure,
if at all valid, is so only when the critical point is close to the wall.
The ordering procedure of Dunn and Lin (ref. 3) assumes the region of the
wall to be distinet from the critical layer and leads to a set of reduced
equations valid near the wall but not necessarily valid at the critical
layer. Because of the desire to obtain proper representations of the
rapidly varying viscous solutions in the vieinity of the wall to satisfy
wall boundary conditions, it seems reasonable to use Dunn-Lin ordering

at all times. The validity of Dunn-Lin ordering even in the 1imit ¢ - O
now remains to be demonstrated.

The viscous effects near the wall are restricted to a narrow layer

which doeg not include the critical point if it is shown that the thick-
ness of that layer 8y is smaller than the height to the critical point

Yo. An approximate (asymptotic) magnitude for &, 1is

( 2v )1/2
D, =~ kil

w ~J

aRe ¢

while for ¢ - 0, y, = ¢/W} and thus

By ~ Wv'r(fZVw )l/z

Ye ¢ \qRe ¢

This ratio may be more easily evaluated when expressed in terms of z,
the argument of the TietJjens function. As c¢ = O,

ZSzM

12
Vi

so that the ratio 6.w/yc may be estimated as

i‘ym:@_
Ve Z52

As long as z 2 2, the premlse underlying Lees-Lin ordering, namely, that
the wall is in the neighborhood of the critical point, seems invalid.
Since in most cases of interest z 2 2, it seems reasonable to expect
Dunn-Lin ordering to hold for any surface temperature even as c - O.

It is questioneble whether Lees-Lin ordering ever applies at the wall.
Strictly speaking, it probably does not apply, but practically speaking,
it holds whenever the resulting equations are the same as by Dunn-Lin
ordering which occurs, for example, for incompressible flow.
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We now proceed with the Dunn-Lin ordering. Mean flow quantities and
their derivatives are of unit order. With the quantity (W - c) taken to
be of order unity and differentiation of a disturbance amplitude with re~
spect to y changlng its order of magnitude by l/e, a consistent set of
disturbance magnitudes are

re~o~F P~ eF W/YHe ~ 27 (47)

If the quantity = 1s eliminated between equations (27) and (28) and the
orders of magnitude of the varilous terms are evaluated with the aid of
equation (47), the leading terms that result comprise the following equa-
tions:

Continuity:
P+ 1F = HWFE_C)Q (48)
Momentum:
F - _i_ufe_‘(jd_-__c_)_ F' =0 (49)
Energy:
o - icaﬁéiw - c) 60 (50)
with

1

€ ~ z;§2317§ (51)

Of the six linearly independent sets of solutions to equations (48)
to (50), solutions 1 and 2 are identified with the inviscid solutions,
solutions 3 and 4 are those where F' # 0 but 6 = 0, and solutions 5
and 6 are those for which ¥ =0 and 6 # O. The aforementioned num-
bers will appear as subscripts to identify the solutions.

Consider first the momentum equation (eq. (49)). Following Tollmien
(ref. 13), make the transformations

v 2/3
Y - / IR (52)
Ve
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and
F = },‘/g_;; 3'("%9)1/4 (53)
Then equation (49) becomes
£ [iaﬁeY + 6”(1)] ¥ =0 (54)
ay?

The second term in the bracket of equation (54) is of order 1/aRe
compared with the first bracketed term and may be omitted. Thus equation
(54) becomes

2
d—g— - 1aREYZ = 0 (55)
ay
Now let
£ = (afe)Y/ 3y (56)
so that equation (55) becomes
2
L2 iz =0 (57)
ag

which is identical in form to that solved by Lees and Lin (ref. 1). Equa-
tion (57) has two linearly independent solutions

5= L ()] (53

]

3

and

i

7 - M%EE (10)3/7] (58b)

Solution (58b) is rejected immediately since it grows exponentially for
large t (large y) and cannot possibly satisfy the outer boundary con-
ditions on F and ¢. From this set, therefore, only solutions with
subscript 3 are pertinent to the problem. From equations (53) and (58a)
the solution for 3% is

g
N A S T

o]
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With recourse to equation (48) the solution for ¢z 1is

os = (_&% 5/2 dY / / /2H [2 )3/2]&; at  (59)

and, of course,

6z = 0 (59¢)
In performing the integrations to obtain 35 and @z (and also
®5 1in eq. (65¢)), quantities such as dy/dY, dY/d¢, end mean flow func-

tions were taken outside the integral sign since they are slowly varying
compared with the balance of the integrand. Slowly varylng functions are
those for which d/dy ~ @(1). This simplification incurs an error no

larger than order (aRe)‘l/S.

The energy equation (eq. (50)) can be written in a form similar to
equation (54) through the transformetions

y 2/3
/ :;’-JE———KWV'C) ay (0)

Yo =
Ye
and
Y 1/4
B 0 lolw - ¢)
® =0 = ~e[ VT ] (61)

After the unit order term is dropped, compared with the term of order
(aRe), let

Lo = () 2/ Y, (82)
Then the energy equation becomes
2

i—c—g - 14,@ =10 (83)
0

which has the solutlons

6 = &/ %2 (1000 (642)
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and

0, = ¢t/ % (? [ (ico)S/z] (64D)

The solution 8z grows exponentially for large to (large y) so that

it too is dropped because it cannot satisfy the outer boundary conditions.
Then for solutions with subscript 5

Fs5 =0 (65a)

From equations (61) and (64a)

o - (éz;) 1/2 g1/2 ) [ (1t,) 3/?] (65D)

ax,

and from (65a), (65b), and the continuity equation (48)
Co

- e 3/2(aY
P5 = L T )(ggo) (dgg) §l/2 1/3 [ (1 §o)3/2]d€o

(65¢c)

Eigenvalue Problem

The solutions of the disturbance equations must now be combined to
satisfy the boundary conditions. Note that the outer boundary conditions
for subsonic disturbances (32) are inherently satisfied by choosing the
negative exponent in equation (39) and by retaining only the viscous so-
lutions 3 and 5, which decay exponentially far from the wall. The three
boundary conditions at the wall (egqs. (31)) remain to be satisfied.

The inviscid functions will be denoted by the subscript inv. The
satisfaction of boundary conditions (eqs. (31)) leads to the following
determinantal relation:

CPinv,w ¢3,W cP5,w

Finv,w 3,w 5,w| =0 (66)
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but from equations (59¢) and (65a), 63 = F5 = 0, so that the secular
equation becomes
Pinv,w _ P3w Oinv,w P5,w (67)
~?inv,W' ‘75,w ~?inv,w e5,w

With the aid of the identity derived from the inviscid equations (34Dp)

and (34d4),
9 ~o w! T P
—’——;m Yoo (y - )M + iy - 1)MEe {l - s 2] .
inv,w ¢ (y - 1)M°c inv,w (88)
the secular equation (67) reduces to
P P
fglz_ + (v - 1)ﬁ2c ééiﬂ
q)inv,w 3,W S,w (69)

. = ~ Tt 1
Finv,w 1 - ily - 1)M2e ESZWFﬁE‘_ Ty _ é]
- c

Appearing in equation (69) are the ratios @S,W/‘;s,w and $5,w/95,w’

which upon evaluation from the viscous solutlons are

o
/ / ]_/ZH(l) (Q)B/Z]dc %
(70) .

1/2 1/ [5 (ig)3/2]dg

72 ().,

~?3,w

and
Sou
2 2, 2
gé/ H&%[E (1§o)3/ ]dgo

e {d. dYO oo
(d%) (dC ) /2. (1)[2 1.y \3/2
o/\%o/,, 6y Hl/s[g (it,) ]

P

coFe
o Ul
% |=
I
'T“l



Let

z = -0,
zo = Lo,

also define the Tietjens function

/ / 1/2 (1 ( C)S/Z]dé a

Z /—Z 1/2H§}5['3' i§)3/2]d§

00

and an auxiliary function

-7
_/ 1/2 /[ (it,) 3/2](1;0

a(zo) =

123 A% (1207

" Equations (70) and (71) can now be written

o= 2 =oft) (),
GSW w O\aY d‘;O

Note here that Zg = O /32 so that

6,68, - -(5) @)

and

2l

(72)

(73)

(74)

(75)

(76)
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comes

In terms of the universal functions F(z) and E(ZO), equation (69) be-

a ay
u() (#) |7
cpinvf,w _ “\ay W a6/

() + (= LiFCE

~

G(zn)
T, 0
Finv,w M2 nl re W
s s DT e
W

Y i 8.8,

Equation (77) is a proper secular eguation; however, to avoid some of

(77)
equation is further reduced.

the difficulties involved in the expressions for (dy/dY),(dY/af),, the
Let

1+ A = (78)
W

where it can be shown that

Ve

w! -
—-—/ Wt - (o
0
Further, define
- 1)M2c2
KE(Y é)Mc
W

G = (n'/aln),

(80)
Since from the inviscid equations (34b) and (34c) and the definition

Pinv,w _ i
- 1
?inv,w Wy

(81)

L
c Gy
equation (77) can now be written, after some manipulation, as
‘—l +K§(ZO)]
T e W A G(zn)0(z) T!
L-x31 %2 |1 9 _= =
1 - < A
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where

1

o(z) Em (83)

is the modified Tietjens function. Manipulating the Tietjens function
and its derivative with respect to =z shows that

o B F(z) o 0(z) -1
62) =150 - ) " T, 52) (84)
O(z

- Z

The functions F(z), &(z), and &(z), as recently recomputed, are repro-
duced for convenience in teble I. For =z > 10 an asymptotic form of
the secular equation (82) can be obtained as shown in appendix C. The

. resudlt is

W! T'c
Yoo~ (14 A (1 + Kom1/2)p l+i[l+2(l+?\)p<l+ ki 0"1/2)

c W TWW%

-1

+

+ (5—31<il7§>p ... (85)
2 + 2Ko~

where

.=3/2 1 \2/3
P=T z = (p—-‘/_E) (86)

Computation of Neutral Stability Characteristics

For a gilven boundary-layer profile (W,T), choose a value of
¢c>1 - (1/M). Then

(1) Obtain the inviscid solution and record the values of Gy for
various assumed values of «.

(2) Find the values of z and o for which equation (82) or (85)
is satisfied.

(3) Compute oRe from the relation

~ ZS
aRe = » v (87)

Yo
c - W
' v dy

oo en



(4) The quantities o and oRe being known, the Reynolds number
can be computed.

This procedure is to be repeated for successive values of ¢ to obtain
further points of neutral stability.

In some cases it may be convenlent to use the Heisenberg-Lin formu-
lation of the inviscild solution particularly 1f o 1is known to be a
small quantity. A formulation for this case has been gilven by Mack
(ref. 6). A slightly different formulation, which 1s related more
closely to the present secular equation (82), is given in appendix D.

Special Cases of the Secular Equation

A few of the slgnificant aspects of the current formulation are
brought out through the following special cases:

Compressible boundary layers over insulated surfaces. - The secular
equation for the stability of insulated boundary layers is obtained by
teking T} = O 1in equation (82). The secular equation then becomes

Jfg‘sz: - MZ?\—:(J[l-FK#] (88)
A+ 1

The first bracketed term on the right side of equation (82) is a func-

. . _ (r - 1)M2c2
tion of 2z @&alone, while the factor K = T in the second
W
bracketed term introduces quantities dependent on the chosen boundary
layer and value of c¢. These tend to make the eigenvalue determination

more tedious. In the limit of Mach number zero (M = 0) only the first
bracketed term survives and exactly the result of Lees and Lin (ref. 1)
is obtained. Solutlons of equation (88) have been obtained in references
4 and 6 where it is shown that the factor K %%;%l, which directly rep-
resents the effect of the temperature fluctuations, becomes important

at Mach numbers of the order of 2. It 1s shown further in reference 4
that equation (88), which restricts consideration to the leading terms

in the viscous solutions, gives adequate results only on the "upper

branch" of the neutral curve where aRe >> 1. The next order terms in
the viscous solutions, namely, the leading dissipation terms and higher
order shear and conduction terms, have been considered and thoroughly
discussed in references 4 and 5.
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Mach number zero. - The secular equation for a Mach number zero
flow is obtained by setting K equal to zero in equation (82). This
procedure leaves

o(z) - 1
A
Wy 1 - 5T o)
- o G = B(z0)0(z)  Tic (89)

1 -

A T Wt
T o(z) “w'w

The numerator on the right side of equation (89) represents the result
of Lees and Lin (ref. 1), but for noninsulated surfaces, even at zero
Mach number, the temperature fluctuations enter as shown by the denom-
inator of equation (89).

CONCLUDING REMARKS

For Reynolds numbers sufficiently large that the dissipation terms
in the disturbance energy equation are negligible, the stability of a
three-dimensional boundary layer to a plane-wave disturbance of arbitrary
orientation reduces to a two-dimensional stability problem governed by
the boundary-layer velocity profile in the direction of wave propagation
and. by the mean temperature profile.

A procedure for exact calculation of the inviscid solution is pre-
sented while the viscous solutions including that for temperature fluctu-
ations are cbtained in terms of universal functions. The satisfaction
of boundary conditions on velocity and temperature fluctuations leads
to a secular equation from which it is apparent that consideration of
the temperature fluctuations can have effect on the calculated eigen-
values for insulated compressible boundary layers as well as for non-
insulated boundary layers at zero Mach number.

It is shown further that the viscous effects on the disturbance
flow near the wall are restricted to a narrow layer, the thlckness of
which is always less than the distance to the critical layer, even in
the case of the critical layer approaching the wall. This tends to
support the applicability of Dunn-Lin ordering to all boundary-layer
stability problems.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 28, 1962
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APPENDIX A

SYMBOLS

The symbols used in the present report are, in general, those com-
monly used in the literature on boundary-layer stability. In some re-
gretable instances a symbol will represent more than one item. The mul-
tiple uses will be indicated here and confusion should be minimized.

A eq. (45)

B eq. (46)

c disturbance propagation velocity

p specific heat at constant pressure

F(z) Tietjens function (eq. (73))

F(y) composite longitudinal velocity fluctuation amplitude,

(f cos ® + h sin ©)

F 5'-\/6357dy

£(y),h(y) amplitudes of veloclty fluctuations in x- and z-directionms,

respectively
G ﬂ'/azn
d(z) auxiliary function (eq. (74))
(I - l!ﬁzcz

X T

W
k thermal conductivity
L;ef reference length

ﬁ U;ef/ -\/ TR*TZ
Mper U?ef/'VTR*Tief

m(y) viscosity fluctuation amplitude

D pressure
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2"3/2/ /2

fluctuating component of flow quantity
fluctuation amplitude

gas constant

UﬁefLief/VZ

Uperbres/Vres

density fluctuation amplitude
static temperature

local external temperature
reference temperature

time

L;ef/U:ef

resultant external velocity

reference velocity, UZ cos(® - Y)
velocities in x-, y-, and z-directions, respectively
real part of secular equation (appendix D)
* *
u*/ug = u/ue
imaginary part of secular eguation (appendix D)

U4 wtan © tan ¥
1+ tan ® tan ¥

composite dimensionless mean velocity,

* *
W /we = w/we
surface coordinate directions
Tollmien variable for momentum equation

Tollmien variable for energy equation
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o(y)

normal coordinate
-, argument of the Tietjens function

-gow argument of the auxiliary function

wave number, 2w/A

normal velocity fluctuation amplitude
ratio of specific heats
boundary-layer thickness

thickness of viscous layer near wall
ordering parameter, (aﬁé)‘l/z

(ofRe) /3

(aE2)L/ 3y,

Yy - VYe

angle of wave propagation direction relative to x-axis
temperature fluctuation amplitude

wavelength

absolute viscosity coefficient

second viscosity coefficient

kinematic viscosity

pressure fluctuation amplitude

density

Prandtl number

modified Tietjens function

gquantity related to normal velocity fluctuation amplitude

angle between resultant external velocity and x-axis
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Subscripts:

c quantity evaluated at critical point

e local condition outside mean boundary layer (external)
i imaginary part

inv inviscid

r real part

ref reference gquantity

W quantity evaluated at wall

Superscripts:
* dimensional mean quantity
*! dimensional fluctuating quantity

J denotes differentiation with Fespect to y beyond eq. (15)
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APPENDIX B

COMPLETE DISTURBANCE EQUATIONS FOR PARALIEL FLOW

The complete three-dimensional disturbance equations for a parallel
flow with constant Prandtl number are as follows:

Continuity:
P e B e v o (S A SE) ()
Momentum:
p*(g‘g + u¥ %{u:' + W g;:' + oy %:) = - gﬁi'
-

2 duxt | yxt
+3 (Sig - H*)(axiz + szay* + &%Z*

o B2 (R - BB E)

(g}c—i'-+u 5—'—+W %V;L)=—g§':—'

o Dkt | Pyxt | JPyx! Bzw*'
T (—"—ax*z R R

2 Pyt Q¥ azw* '
#\ (dvrny 2 OB - b¥) rauxr | dvxr L dwe!
A$)(§) + 5 S+ S+ 55)

@R BE




31

p*(g%zl + u 3——L + W ET—L + V! g%;) = - %gzl

D%gxt | d%yw dyxt | QPurt %y
*<Bx*2 + dy*2 *e Jz %2 t SxeE T Jy*Jz*

2 Sfux ¢ Qo byt
tz (HE - H*)(S**az* Sy *dz* + SZ¥2 )

o Z QB (BB o

dy*?

Energy

Q*(%%;i + u* gg;i + w* %gzl gy %g;) - f;(at:' + g gﬁ;i + o %E;l>
o 5 5 R
e TR A3 (55)
el ) 56 3]
vl (&) -

State:

p*' p*' Tt
oF = 0% + T (BG)

Equations (Bl) to (B6) are made dimensionless as in the text of this
report. A disturbance of the form of equation (15) is introduced and the
subsequent transformations carried out. The resulting transformed equa-
tions are:

Continuity:

i(W - c)r +p'p= -plp' + 1F) (B7)
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Momentum:
o[i(W - ¢)F +W'p]l = - ﬂiéef + qReL;ef F' + «2(ig' - 22)]

+ % % a?(ip'- F) +G»Relref [mW"+ m'W+pt (21 + iafp)] (B8)
100B(W - c)o = - S+ g(2g" + 15 - aZp)

YMgef Rerer

+§.%u("+ijl)+ @ imwl-{-zh-l.'.é( l)( |+'})]
3 Reper P Repor L pd=p % i

(B9)

Energy:

pli(W-c)o + T'q] = i(‘r; )(W- e)m + E&TR%_ (n(8" - af9)+ (mT') '+ u'g']
ref

+ (v - l)Mzz'ef I-E' cos ¥ 12 . ¥ sin v |2
aRepep m lfos(@ -Y) cos(6 - ¥)

Z'f' cos ¥ + w'h' sin ¥ 2,
+ Zp,r COS(@ ~ \1,) + ig, W'

(B10)
State:
T = % + % (B11)
In these equations, as in the main text,
W= u+w tan © tan ¥ (B12)

1 + tan © tan ¥

The fluctuating viscosity can be related to the temperature fluctuation
through

m = e(%%) (B13)
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while the normal gradient of mean viscosity can be expressed

pt o= T'(%) (B14)

The continuity and momentum equations (B7) to (B9) are identical
in form to those for two-dimenslonal boundary layers with respect to
two-dimensional disturbances; however, in the energy equation the dis-
sipation term having coefficient (y - l)M?ef/aReref dees not transform
as is seen by the inability to express this term in W and F alone.
Even in the case of two-dimensional boundary layers (¥ = 0) with respect
to three-dimensional disturbances, the dissipation term is

2
(v - IMper T\ £! )
— . 2
aReper m(cos C) * zuu'('cos e * it

and does not transform confirming the result of Dunn and Lin (refs. 4
and 7).

The Dunn-Lin ordering procedure (eq. (47)) used to obtain the viscous
solutions to disturbance equations indicates that the leading dissipation
term

2z - —
(r - 1)Mref o u'f*® cos ¥ + w'h' sin ¥
aReper H cos(® - Y¥)

is one order of magnitude smaller than the leading conduction term

——=—— u6"; thus, if the analysis is restricted to consideration of
OoRepef

the leading viscous terms only, the disturbance equations for three-
dimensional boundary layers to three-dimensional disturbances transform
+to those for a two-dimensional boundary layer to two-dimensional dis-

turbances. Such restriction is valid when —————l———7— < 1.

(aReper)t 2
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APPENDIX C

SECULAR EQUATTON FOR LARGE =z

In terms of F(z) and >E(zo) alone, the secular equation (82) is ex-

pressed as

Wy F + K3

T | T < Tio (c1)
— P - G
T+ T W
The asymptotic variation of F(z) from Lin (ref. 14) is
1
F(z) = — (c2)
23/26-1]'(/4: - 5/4
Let
-3/2
z
<2
so that
,~3/2ein/4 _ p + ip (c4)
The asymptotic forms of ¥F(z) and a(zo) in terms of p to order p?
are
. 5
F(z) ~p + ip(l + 3§ 7) (cs)
and

N F(z.)
G(20) = 1 F(zg) (2 2oF ' (20) G-l/g[p ) ip(l * % e p)] el
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When (C5) and (C6) are substituted into equation (Cl), the secular equa-
tion for large =z (small p) is written

ol G, = (L+ N1+ Kc'l/z)p{l + i,EL +2(1 + ?\)p(l + Tye 0‘1/2)

ry T W

-1
N (25:2;1:31 2_)1)] + .. } (c7)

Note in equation (C7) that to order p, the real and imaginary parts of
the right side are equal. The quantity z is related to p by

(c8)

/
z=<#)23
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APPENDIX D

SECULAR EQUATION USING HEISENBERG-ILIN INVISCID SOLUTION

In order to obtain the Heisenberg-Lin inviscid solutions, the in-
viscid equations (36) are written as a second-order differential equa-
tion in o

2
sl R St o
Ve - M°(W - ¢)
Then a solution of the form
P = w(o) + azw(l) + a4@(2) + ... (D2)

is sought. The two solutions that result from this procedure (following

ref. 8) are
¢ = (W - c) S aflhg, (D3a)
=

Pp = (W - c) ‘lznkgn-;.l (D3b)

Ti=

and

where

T - ME(W - c)? (W = c)@
(W - 0)2 T

hop-p dy dy

(D4)
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and

¥y =N
~o 2
T - M°(W - ¢)
X, = d
1 (W-c)2 v
0
f(DS)
y " , y
T - ME(W - (W - c)?
Kot = (w( 2c) / ‘ Tc) kop1 & dy
- c)
0 0 J

Now the ratio winv,w/‘;inv,w is found by first obtaining that combin-

ation of solutions 1 and 2 that, in the outer uniform mean flow, satisfy

the outer condition of + a\/l - ME(1 - c)? ®s = 0, and then using the
following identity from the inviscid equations

PRy
TyPlny,w T WyeM™@

Z. = 1 , inv,w
inv,w ~s D
T, - Mc
The resulting expression is
CPinv,w i
F T ' o2 2 (D6)
inv,w D_J_‘i .|..‘].j."_". e * “\/1 - M4(1 - ¢) P1,e
¢ c

9h,e +al - B - )% ey,

The resulting secular equation is

o]
(u-1) +iv= o(z) -1 = F(z) (D7)
1 - A o(z) G(zo)®(z) Tlc
N+ 1 1- > T
-7\+l®(z) W

u and v are given by

W'e 2 2
w=T 4 ‘/l'M(lgc) (i-Al+A2a+...> (Dsa)
W (1 -¢) «@ r
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and
eyl oM -9f
Vv = v LU v — a
0 W (1 - c)? ( 24
Further
‘e
W
L =1+—K
T, 1
and
7 W'ec
W
VA = K
0 TW li

The coefficients A; and A; are given by

V1 - M(1 - ¢)?
- Hy

A (1 - o)’

and

Ay = AS - 2m,

and Kl, Hl 3 and Hz by

8
~o 2
T - M“(W - c)
K, = dy
t (W - c)Z
0
23
2
W-2c
H = T

(Dab)

(D9a)

(DY)

(D10a)

(D10b)

(D11a)

(D11b)
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and

&

Y
552 2 pA
Hy = T - M°(W - ¢) / .ﬁw;TcL dy dy (D1llec)
0

(W - c)f
0

Expressions for u and v to order o as well as procedures for
evaluating the H, and KX, integrals are given by Mack (ref. 6).

The calculation of neutral stabllity characteristies is usually
performed by the following iteration procedure: First, assume o =0
in equation (D8b), then find z for which vg(e) = Im [RES (eq. (D7))].
Set u=1+Rl [RES (eq. (D7))] and solve for the first approximation
to a by using equation (D8a).

! ~2 2
17 (’jwc ) \{%'; 2 (l~—2<(:) )2 (p12)
wid = ¢ w |L-M(1l-c¢c
(u-1L) + T [ 1 - o)t ]H

The next 1lteration on__a—is_carried out by substituting a; 1nto equa-
tion (D8b) to give vy and the procedure is repeated with the Az

term in equation (D8a). Successive iterations can be carried out with
the additional terms of equation (D8) given by Mack (ref. 6). The

value of oRe can be computed from the final value of 2z

o«Re = z (87)
Ye
c - W

and then with « known the value of Re is obtained.

o

The procedure of thls appendix, perhaps, has a slight advantage
over that of Mack since the quantity A appears only on the right side
of the secular equation (D7) rather than on both sides.
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1.

2.

11,

1z.
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TABLE I. - TIETJENS AND AUXILIARY FUNCTIONS

[Fox- 0 £z g 6.76, the table 18 taken from Mack {ref. 6). For 6£.B0  z £ 8.00, the functions F, and F; are interpolated from
the data of Miles (ref. 15), and the other functions are calculated from thelr definitlons {83) and (84). PFor B.10 < z < 10.00,
the functions F,. and F; are from Miles and the other functions are calculsted from thelr definitions. It 18 expected that all

numbers are correct to 1»,3.00002.]

z P Fy o oy o, 8y z Fp Fy ¢r 4 & [
0.04 |16.98520 | —0.70547 ! -0.28788 | -0.17473 | 20.64871 | -11.73373 || 2.24 |0.57119 [-0.01315 |2.32982 |-0.07144 [0.55086 |0.37638
‘68 | B.s81s3 | -4.85142 | -.09358 | -.08988 | 10.48302 | -5.86208 || 2.28 | .56644 | -.00397 |2.30629 | -.02112 | .52294 | .38167
‘12 | 5.78146 | -3.23248 | -.14354 | -.09704 | 7.10585 | -3.90332 || 2.32 | .56172 | .00527 |2.28132 | .02741 | .49545 | .38538
38 | 4.3ap31 | -5.49957 | -.19541 | -.13996 | 5.41695 | -2.92183 || 2.36 | .55701 | .01457 |2.25495] .07416 | .46853 | .38757
.20 3.54347 ~1.83612 -.24893 ~.18949 4.40567 -2.33144 2.40 55229 .02384 je.22720 .11210 . 44227 .38831
.24 2.98484 -1.61148 -.30366 -.24854 3.73341 -1.93677 2.44 54753 .03339 §2.19811 .16221 .41678 .38770
o8 | 2.58634 | -1,37917 | -.35301 | -.31213 | 3.25416 | -1.65308 || 2.48 | .54271 | .04292 l2.16771| .20345 | .35@1S | .33582
"2 | 2.28794 ! J3ip0450 | -.4lals | -.38735 | 2.89670 | -1.43942 || 2.52 | .53782 | .05253 [2.13607 | .24279 | .36843 | .38278
‘36 | 2.05623 | -1.06849 | -.46792 | -.47335 | 2.61980 | -1.27192 || 2.56 | .53283 | .06223 |2.10323 | .28016 | .34570 | .37870
‘s0 | 1.87127 | -.95934 | -.51878 | -.57122 | =.39924 | -1.13864 || 2.60 | .52772 | .07201 |2.06927 | .31552 | .32398 | .37367
44 | 1.72027 | -.seo72 | -.56483 | -.68203 | =2.2200s | -1.02502 || 2.54 | .52246 | .08189 [2.03428 | .34882 | .30331 | .36781
248 | 1.59475 | -.79477 | -.80357 | -.80655 | 2.07170 _i93069 || 2.68 | .51704 | .09182 11.99825 | .38000 | .28371 | .36122
‘s | 1.48888 | -.73108 | -.63204 | -.94520 | 1.94710 Zipgs7s || 2072 | 51142 | .l018s |1,96145 | .20901 | .26518 | .35401
's6 | 1.39837 | —.e7e1 | -.64674 | -1.09782 | 1.B&lg5 Zi77a27 || 2.76 | lsoss9 | .11200 |1.92388 | .43582 | .24771 | 34626
60 | 1.32021 | -.s2841 | -.54372 | -1.26330 | 1.75001 Zi71896 || 2.80 | .49951 | .11219 |1.88586 | .48037 | .23130 | .33807
.64 | 1.25208 | -.5BE34 | -.561884 | -1.43945 | 1.67093 _.g6130 || 2.84 | .49317 | .13045 |1.84692| .48265 | .21592 | .30353
86 | 1.19220 | -.54885 | -.56816 | -1.62274 | 1.60200 Zlg1097 || 2.88 | .48653 | .1a276 |1.80780| .50263 | .20154 | .32071
72 | 1.13920 | -.51548 | -.48827 | -1.80810 | 1.54125 Cigee7 || 2.92 | .47958 | .15312 {1.78843 | .52030 | .18814 | .31168
176 | 1.09200 | -.48587 | -.37714 | -1.9891% | 1.48743 Cis2psg || 2.86 | .47227 | .16350 [1.72894 | .53566 | .17569 | .30252
80 | 1.04975 | -.45784 | -.23448 | -2.15865 | 1.43954 Zlas317 || 3.00 | .46458 | .17390 |1.68945 | .54873 | (16414 | .29327
.84 1.01168 -, 43277 -. 06233 -2.30900 1.39828 -.44622 3.04 .4564¢ .18425 ]1.65018 .55853 .15346 . 28400
88 | L9772 | -.a0975 113486 | -2.43307 | 1.357%4 “ig107 || 308 | L4e797 | .19464 [1.61115 | .58809 | .14360 | .27474
.92 . 94607 -.2B8845 . 35085 -2.52556 1.32e89 -.37798 3.12 .43398 .204%3 |1.57264 57446 .13453 . 26555
Ls6 | .e1762 | -.36871 57718 | -2.58320 | 1.29104 Zi34611 || 3.16 | .42951 | .P1513 [1.53465 | .57871 | .12620 | .25645
1.00 | .89162 | -.35029 J80612 | -2.60534 | 1.26190 Zix1sa1 || 3.20 | .41952 | .p251S |1.49736 ) .58090 | .11857 | .24747
1.04 | .86778 | -.33303 | 1.02983 | -2.59383 | 1.23504 _.easss || 5.24 | .40500 | .23509 |1.46089 ) .s8111 | .11lel | .23866
108 | .e4sss | -.s1smo | 1.24187 | -2.55230 | 1.21019 _iasEm1 || 3.28 | .39791 | .24476 [1.42534| .57943 | .10527 | .23002
1.12 .B82565 -.30148 1.43751 -2.48566 1.18698 -.22805 3.32 . 38825 .25417 |1.38082 57596 .08951 .22158
136 | .8osss | -.z8895 | 1.61397 | -2.39928 | 1.16514 I 50007 i 3.36 | .37400 | .26324 |1.35741| .57081 | .09430 | .21336
120 | .78968 | -.27313 | 1.76388 | -2.29843 | 1.14448 _17245 || 5.40 | (36115 | 27193 [1.32521| .56408 | .08960 | .20536
1.24 | .77363 | -.25993 | 1.90532 | -2.18785 | 1.12471 _,14512 || 3.44 | .34769 | .28016 [1.29427 | .55588 | .08538 | .19761
1,28 | .75871 | -.94730 | 2.02123 | -2.07154 | 1.10566 Tll1p02 |l .48 | .33364 | .p8787 |1.26467 | .54633 | .08160 | .13011
1i32 | .74480 | -.23816 | 211311 |-1.es271 | 1.08715 Cloe107 |l 3.52 | .z1s00 | .29437 |1.23645 | .53556 | .07823 | .18286
136 | 73182 | -.22347 | 2.20078 |-1.83384 | 1.08892 Closa2s | 3.56 | .30380 | .30139 |1.20968 | .52367 | .07524 | .17588
1.20 | (71969 | -.p1pis | 2.26814 |-1.71667 | 1.05084 Zipz7se 1l 3.80 | .28807 | .30706 |1.18432| .51080 | .07260 | .16916
1.44 | .70832 | -.20120 | 2.32304 |-1.60244 | 1.03274 ~.o1103 || 3.54 | .27188 | .31188 [1.16045| .43705 | .07028 | .18271
1,48 | 189765 | -.13055 | 2.36720 |-1.49191 | 1.01448 101541 || 3.68 | .25522 | 31579 |1.13808 | .48255 | .06825 | .15652
1.52 .88763 -.18018 2.40215 -1.38558 . 99590 .04183 3.72 .23824 .31871 [1.,11719 .46741 06850 15060
1.58 .67820 -.17004 2.42925 -1.28380 . 97688 .DE760 .78 . 22098 .32057 |1.09778 .45173 06493 .14495
1.60 | .66930 | -.16011 | 2.44968 |-1.18603 .95733 109327 || 3.80 | 20356 | .32131 |1.07983 | .43564 | ,06370 | .13956
1.684 . 66080 -~. 15037 2.46440 -1.09278 .93714 .11853 3.84 .18807 .32089 |1.06333 41822 06261 L13442
1.68 | 85294 | -.14078 | 2.47425 |-1.00368 .91622 11331 || 3.88 | .16865 | .31928 |1.04825] .40258 | .06170 | .12954
1.72 | .64540 | -.13133 | 2.47993 | -.s1848 183451 16743 || 3.92 | .15142 | .31646 |1.03456| .38581 | .06096 | .1z491
1.76 | .63824 | -.12200 | 2.48133 | -.83700 187198 19096 || 3.96 | .13450 | .31p43 |1.02221| .38900 | .06035 | .12052
1.80 .63142 -.11278 2.48090 -,75897 .84859 21380 4.00 .11805 .30721 1.01116 . 35222 . 05987 .11636
1.84 | .62491 | -.10360 | 2.47706 | -.68415 ,82435 23527 || 4.04 | .l0218 | .30085 |1.00136 | .33556 | .05951 | .11243
i.88 .B1668 -.09450 2.47074 -.81230 . 79931 25588 4.08 08703 29343 89277 .31308 05923 .10872
1.9z | .s1271 | -.loss45 | 2.48220 | -.54322 77343 27524 || 4.12 | .o7e7a | 28501 | .98534! .30285 | .05904 | .I0522
1,96 | 60897 | -.07642 | 2.45183 | -.47871 174897 29330 || 4,16 | .05934 | .27569 | .97893 | .28693 | .05892 | .10193
2.00 | .60143 | -.08742 | 2.43317 | -.41260 71984 130895 || £.20 | .04699 | .26560 | .97368| .27136 | .0S885 | ,09883
2.04 | .59607 | -.05842 | 2.42495 | -.35074 .69200 30509 || 4.24 | .03574 | .25486 | .96935] .25621 | .05883 | .09593
2.08 | .59087 | -.04942 | 2.40905 | -.29099 88417 33865 || 4.28 | .0e564 | .24361 | .96534 | .24150 | .05885 | .09320
2.12 .58580 -.04040 2.39154 -.23326 .63588 35058 4.32 L01871 23197 .96338 22728 .05889 .08064
2.18 .S8085 -.03136 2.37248 ~. 17747 .B0747 .38085 4.36 008398 .22010 .96161 21357 .05886 .08B24
20 ~-.02227 2,35189 -.12355 .57308 36945 4.40 Q0238 . 20813 . 96058 . 20040 05903 08600
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TABLE I. - Concluded. TIETJENS AND AUXILIARY FUNCTIONS

[For 0<z<6.76, the table is taken from Mack (ref. 6). For 6.80 £ z £ 8.00, the functions Fp and F; are interpolated from

the data of Mlles (ref. 15), and the other functions are calculated From their definitions (83) and (84). For 8.10 < z < 10.00,
the functions F, and F; are_from Miles and the other functions are caleulated from their definitions. It is expetted that all

numbers are correct to 10.00002]

z Fx' Fi o 01 G'r ‘_‘L (}1 z Jr Fi \Q‘I‘ @i ar ai :l
4.44 :-0.00306 | 0.19617 0.96023 0.18780 ©.05911 0.08381 ;| 6.64 10.04442 [ 0.04497 | 1.04417 | 0.04913 | 0.04119 | 0.04427
4.48 -.00740 .18436 -96048 17577 .05920 . 081388 6.68 . 04387 .04487 | 1.04359 . 04887 .04080 .04385
4.52 ~-.01072 .17278 . 96130 -16434 . 05927 . 08012 6.72 .04332 .04474 | 1.04300 .04878 . 04042 04344
4.56 ~.01308 .16155 .96261 .15350 .05833 .07841 || 8.78 . 04277 .04458 © 1.04242 . 04885 . 04005 .04303
4.80 | -.01455 .15072 36437 .14327 .05938 .07681 |} 6.80 .04222 -04440 1 1.04184 .04830 | .03968 .04262
4.64 | -.01523 .14037 . 96653 .13364 .05942 .07532 || 6.84 -04187 .04418 | 1.04127 .04801 .03932 .04222
4.68 -.0151% +13054 . 96902 .12461 .05943 .07393 || 6.88 .04113 .04336 | 1.04071 .04771 .03897 .04183
4.72 | -.01452 .l2128 .97180 .11617 .05942 -07283 ;| 6.92 .04059 .04370 ;| 1.04015 .04738 .03862 .04144
4.76 -.01331 .11259 .597483 .10832 .05939 .07141 || 6.96 . 04005 -04343 | 1.03959 .04703 .03828 . 04106
4.80 | -.01164 .10451 .97806 .10104 .05933 .07027 {1 7.00 .03951 -04314 | 1.03904 .04687 .0379s8 . 04068
4.84 1 -.00959 .09702 .88144 .09432 .05925 .06820 || 7.04 .03898 .04282 | 1.03850 | .04628 .03782 .04031
4.88 1 -.00722 .CS013 . 98495 -08514 .05913 .0B813 i} 7.08 .03847 .04250 | 1.03798 { .04588 .03728 .03994
4.92 | -.00460 .08382 .98853 .08248 .05900 .06725 |} 7.12 -03799 .04216 | 1.03748 . 04547 Q3697 . 03957
4.96 | -.00180 .07808 .99217 .07733 .05883 .08636 | 7.16 .03752 .Q4182 { 1.03703 . 04505 .03666 . 03922
5.00 .00113 .07289 .99583 .07287 .05864 .06552 11 7.20 | .03708 .04148 | 1.03656 .04463 .03635 .03887
5.04 00414 .066822 -99947 . 06846 .05842 .06472 || 7.24 03661 .04110 | 1.03612 .04420 .03605 | .0D3B52
5.08 .00720 . 06404 1.00308 . 06470 .05817 .06397 || 7.28 .03617 .04073 | 1.03568 .04376 .03575 .03817
5.12 .01026 .06032 1.00682 .06135 .05790 .06325 || 7.32 .03575 .04035 | 1.03526 . 04332 . 035486 .03784
S.16 -01328 .05704 1.031009% .05839 .05761 .06256 || 7.36 .03536 .03997 1 1.03488 .04288 .03517 .03751
5.20 .0162¢ .05416 1.01345 .05580 .05728 .0B18C § 7.40 . 03487 ~03959 | 1.03450 | .04244 .03489 .03718
5.24 .01815 .05166 1.01870 .05355 .05695 .08127 7.44 .03460 .03921 | 1.03413 . 04200 .03461 . 036388
5.28 .02194 .04951 1.01982 .05162 .05660 .0B0BE || 7.48 .03425 .03883 { 1.03379 . 04156 .03434 03654
5.32 .02462 .04766 1.02280 .04988 .05622 . 06007 7.52 .03390 .03845 | 1.03345 04112 .03407 .03623
5.36 .02717 .04611 1.02562 .04861 .06582 .05949 || 7.56 . 03357 .03807 | 1.03313 . 04069 .03380 { .03592
5.40 .02958 .04482 1.02828 .04748 . 05541 .05894 {| 7.60 08324 .03769 ;1.03281 .04026 .03354 -03562
5.44 .03185 .04376 1.03079 04659 05488 .05839 7.64 .03293 .03731 | 1.03251 .03983 .03328 .03532
5.48 .03397 04292 1.03313 .045%0 .05455 .05788 || 7.68 .03263 .03693 | 1.03223 . 03942 -03302 .03502
5.52 .03594 .04226 1.0352¢% . 04538 .05410 05734 || 7.72 .03235 .03657 | 1.03196 .03901 .03277 .D3473
5.56 .03776 .04177 1.03728 . 04503 .05365 .05682 1} 7.76 . 03207 .03621 | 1.03169 . 03861 . 03252 . 03445
5.860 .03%42 04143 1.03911 .04482 .05318 .05631 7.80 .03180 | .03587 [1.03143 .03822 03227 -03417
5.64 . 04093 .04121 1.04076 .04472 .08270 .05581 (i 7.84 .03154 .03553 1 1.03118 .03783 .03203 .03389
5.68 04230 04111 1.04224 04474 .05222 05531 7.88 . 03129 .03519 | 1.03094 .03744 .03179 .03362
5.72 -04351 .04110 1.04357 .04484 .05174 .05482 || 7.92 .03104 .03486 | 1.03070 .03708 .031556 -03335
5,76 .04459 L04117 1.04473 .04502 .05125 .Q5433 (| 7.96 .03081 .03453 | 1.03048 .03670 .03132 .03308
5.80 -04553 -04130 1.04574 -04525 .05078 .05385 || 8.00 . 03058 .03421 | 1.03026 .03635 .03109 .03282
5.84 .04633 .041459 1.0486€60 .04553 . 05028 .05337 8.10 .03004 .03343 {1.02975 .03549 .03053 .03218
5.88 -04701 04172 1.04733 . 04585 .04977 .05289 || 8.20 .02852 | .03270 | 1.02925 -03468 .02998 .03156
5.92 04757 .04198 1.04791 .04618 .04928 .05241 | 8.30 .02903 .03201 1 1.02878 .03392 . 02945 . 03097
5.96 . 04802 .04226 1.04838 .04653 .04879 .05194 || 8.40 | .02855 .03135 11.02832 .03318 . 02892 -03039
6.00 . 04836 . 04255 1.04872 .04689 . 04830 .05147 § 8.50 | .02810 .03073 ;1.02788 .03250 .02842 .02983
6.04 .04886¢C .0428% 1.04895 04724 . 04781 05100 8,80 .G276S .03014 | 1.02745 .03185 02794 .02929
6.08 .04874 .04314 1.04808 .04758 .04733 .05083 || 8.70 .02721 .02957 11.02702 .03122 .02748 .02876
6.12 .04880 .04343 1.04912 -04790 .04685 05006 || 8.80 .02678 .02903 | 1.02660 .03082 .02638 -02825
6.16 .04878 .04371 1.04906 .04820 . 04638 04960 i 8.90 .02636 .02851 11.0261¢9 . 03005 .02854 02776
6.20 .04868 . 04387 1.04893 .04848 . 04591 .0481¢ |f 9.00 .02595 .02801 |1.02579 . 02950 -02811 | ,02728
8.24 .04651 .04421 1.04872 .04872 - 04545 .04868 9.10 : .02554 -02752 {1.02539 . 02896 02568 .02681
6.28 .04828 04442 1.04845 . 04893 .04499 04822 9.20 .02514 .02705 | 1,02500 02844 .02527 .02636
B.32 -04800 . 04460 1.04812 .04911 .04454 L04777 1 9,30 | .02475 .02659 |1.02461 02794 .02488 .02592
6.36 . 04787 .04478 1.04774 .04925 .04410 .04732 i 9.40 .02436 .02615 11.02423 .02745 .024486 .02549
£.40 .04730 .04489 1.04732 .04935 -04386 .04887 I 2.50 .02399 .02572 }1.02387 .02e98 .02408 . 02507
6.44 . 04888 -04498 1.04686 -04541 . 04323 .04543 | 9.60 02362 -02530 [1.02350 | .02652 | .02371 . 02467
6.48 . 04843 .04504 1.04636 .04943 .0428]1 .04599 |} 9.70 .02326 .02488 |1.02315 . 02607 .02335 .02428
6.52 .04596 . 04507 1.04584 .04941 . 04240 .04556 || 9.80 .02291 -02448 [1.02231 .02463 -02300 | .02383
8,56 .04546 . 04507 1.04530 .043936 .04199 .04512 | 8.90 .02287 .02408 11.02247 .02520 | 02265 .02351

LS,SO 04435 - 04503 1.04474 .04326 .04159 .04469 }j10.00 | .02223 .02371 [1.02213 .02473 .02231 .02315

NASA-Langley, 1962 BE=1472
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